

Published on Web 03/30/2007

syn-Selective Catalytic Asymmetric Nitro-Mannich Reactions Using a Heterobimetallic Cu-Sm-Schiff Base Complex

Shinya Handa, Vijay Gnanadesikan, Shigeki Matsunaga,* and Masakatsu Shibasaki*

Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Received January 9, 2007; E-mail: mshibasa@mol.f.u-tokyo.ac.jp; smatsuna@mol.f.u-tokyo.ac.jp

The nitro-Mannich (aza-Henry) reaction provides synthetically versatile β -nitroamines (eqs 1 and 2) that can be converted to 1,2diamines, *a*-aminocarbonyl compounds, and others. Tremendous effort has been devoted to develop catalytic enantioselective variants over the past decade.¹ Since our reports using heterobimetallic metal-BINOLate complexes,² diastereo- and enantioselective reactions with various nitroalkanes have been realized using metal complexes^{2b,3} and organocatalysts,⁴ such as thioureas,^{4a,b} a chiral proton catalyst,^{4c} and cinchona alkaloids.^{4d,5} Although those catalysts²⁻⁴ gave *anti-***1** in good yield and high stereoselectivity (eq 1),⁶ there are no reports of a *syn*-selective catalytic asymmetric nitro-Mannich reaction (eq 2).⁶ Herein, we report the utility of a heterobimetallic Cu-Sm-Schiff base 3 catalyst to realize a synselective nitro-Mannich reaction, giving syn-2 in high syn-selectivity (>20:1 dr) and enantioselectivity (up to 98% ee). The present system complements the previously reported methods.^{2b,3,4}

As a part of our continuing project on asymmetric bifunctional catalysis, we developed various heterobimetallic complexes using BINOL derivatives as ligands.7 None of the metal-BINOLate complexes screened, however, were suitable to realize a synselective nitro-Mannich reaction. Therefore, we screened other chiral scaffolds that can incorporate two different metals and found that the dinucleating Schiff base ligand 3 (Scheme 1) was a promising candidate.8 The initial optimization studies with N-Boc imine 4a and nitroethane 5a are summarized in Table 1.9,10 The combination of Cu(OAc)₂ and La(O-*i*Pr)₃ with ligand 3 afforded product 2aa slightly in favor of the *syn*-isomer (entry 1, syn/anti = 3:1), despite poor enantioselectivity (5% ee). Rare earth metals affected both syn-selectivity and enantioselectivity (entries 1-5), and Sm(O-iPr)₃ gave the best selectivity (entry 3, syn/anti = >20:1, 80% ee). Cu-(II) was also essential to realize high selectivity and good reactivity (entry 3 vs entries 6-9). Neither Cu(OAc)₂ nor Sm(O-*i*Pr)₃ alone gave good results (entries 10 and 13). Cu(II)-Lewis acid in the presence of amine base resulted in poor reactivity (entry 11, 20 mol % of amine, 0% yield) and selectivity (entry 12, 1 equiv of amine, 24% yield, 1% ee, syn/anti = 2/1), implying the importance of Sm(O-iPr)3. The ratio of Cu/Sm/ligand 3 was also critical for good selectivity (entry 3 vs entries 14 and 15). To further improve the enantioselectivity, achiral additives were screened, and phenol showed positive effects (entry 16, 85% ee). Further screening of phenolic additives revealed that 4-tBu-phenol gave the best results

Scheme 1 . Dinucleating Schiff Base Ligand 3 and Proposed Structure of Heterobimetallic Cu/Sm/3 Complex with ArOH Additive

Table 1. Optimization of Reaction Conditions

N ^B		catalyst (10 mol %) (M ¹ /M ² /ligand 3)	Boc NH	
Ph	F ElinO ₂	THF, -40 °C, 23 h	Ph R R Me	
4a	5a		2aa NO ₂	

entry	metal M ^{1a}	sources M ^{2b}	M ¹ /M ² / 3 ratio	additive	yield (%)	dr ^c (<i>syn/anti</i>)	% ee (<i>syn</i>)
1	Cu(II)	La	1:1:1	none	73	3:1	5
2	Cu(II)	Pr	1:1:1	none	82	1:1	9
3	Cu(II)	Sm	1:1:1	none	96	>20:1	80
4	Cu(II)	Eu	1:1:1	none	93	>20:1	64
5	Cu(II)	Dy	1:1:1	none	89	7:1	48
6	Zn(II)	Sm	1:1:1	none	0	_	_
7	Mg(II)	Sm	1:1:1	none	0	-	_
8	Ni(II)	Sm	1:1:1	none	0	_	_
9	Rh(II)	Sm	1:1:1	none	90	1:3	1^d
10	Cu(II)	-	1:0:1	none	0	-	_
11	Cu(II)	-	1:0:1	<i>i</i> Pr ₂ NEt ^e	0	-	_
12	Cu(II)	-	1:0:1	<i>i</i> Pr ₂ NEt ^f	24	2:1	1^g
13	-	Sm	0:1:1	none	14	2:1	29 ^g
14	Cu(II)	Sm	1:0.5:1	none	14	16:1	3
15	Cu(II)	Sm	1:2:1	none	90	7:1	3
16	Cu(II)	Sm	1:1:1	phenol ^h	81	>20:1	85
17	Cu(II)	Sm	1:1:1	$\overline{2}$,6-(<i>t</i> Bu) ₂ -phenol ^h	91	>20:1	76
18	Cu(II)	Sm	1:1:1	4-tBu-phenol ^h	96	>20:1	94

 a M¹(OAc)₂ was used. b M²(O-*i*Pr)₃ was used. c Diastereomeric ratio was determined by ¹H NMR analysis. d Enantiomeric excess of *anti*-isomer.^{*e*} 20 mol % of *i*Pr₂NEt was used. f 100 mol % of *i*Pr₂NEt was used. g (*S*,*S*)-Enantiomer was major. h 10 mol % of ArOH was used.

(entries 16-18).⁹ Under the optimized conditions, **2aa** was obtained in 96% yield, *syn/anti* = >20:1, and 94% ee (entry 18).

The heterobimetallic Cu/Sm/3 complex with a 4-*t*Bu-phenol additive was applicable to various *N*-Boc imines (Table 2).¹⁰ Aryl imines with either an electron-donating substituent or an electron-withdrawing substituent, as well as heteroaryl imine **4g**, afforded the products in high *syn*-selectivity and ee (entries 3-7).¹¹ Readily isomerizable alkyl Boc imine **4h**¹² was also applicable, giving the product in good ee (entry 7). High *syn*-selectivity was also achieved with nitropropane **5b** (entries 9-11). Catalyst loading was successfully reduced to 5 and 2.5 mol % without any loss of stereoselectivity. With 2.5 mol % of catalyst, nitro-Mannich adduct **2aa** was obtained in 99% yield, *syn:anti* = >20:1, and 97% ee

Table 2. syn-Selective Catalytic Asymmetric Nitro-Mannich Reactions with Various N-Boc Imines 4^a

R 5a: R' = -CH ₂ 4 5b: R' = -CH ₂	Cu/Sm/ 3 = 1:1:1 complex Boo (2.5-10 mol %) <u>4-<i>t</i>Bu-phenol (10 mol %)</u> THF, -40 °C ► F CH ₃				$R \xrightarrow{\mathbf{C}_{NH}} R' \xrightarrow{\mathbf{R}'} NO_2$	
entry imine (R)	nitroalkane	product	time (h)	yield ^b (%)	dr ^c (<i>syn/anti</i>)	% ee (<i>syn</i>)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5a 5a 5a 5a 5a 5a 5b 5b 5b 5a	2aa 2ba 2ca 2da 2ea 2fa 2ga 2ha 2ab 2cb 2eb 2aa	23 48 48 48 48 48 48 48 48 44 48 48 44 72	96 87 90 77 87 81 71 62 84 68 64 92	>20:1 >20:1 >20:1 >20:1 >20:1 >20:1 >20:1 >20:1 >20:1 >20:1 >20:1	94 93 98 96 94 90 91 83 88 95 91 96

^{*a*} Reaction was performed in THF (0.2 M on imines **4**) at -40 °C using 10 mol % of Cu/Sm/**3** complex and 10 mol % of 4-*t*Bu-phenol unless otherwise noted. ^{*b*} Isolated yield. ^{*c*} Diastereomeric ratio was determined by ¹H NMR analysis. Minor *anti*-isomer was not detected on ¹H NMR (>20:1 dr). ^{*d*} Reaction was run at -50 °C. ^{*e*} 5 mol % of Cu/Sm/**3** complex was used. ^{*f*} 2.5 mol % of Cu/Sm/**3** complex and 5 mol % of 4-*t*Bu-phenol were used.

Scheme 2. Conversion to syn-1,2-Diamine^a

^{*a*} Reagents and conditions: (a) NaBH₄, NiCl₂•6H₂O, MeOH, 0 °C, 15 min, 99%; (b) Ac₂O, Et₃N, CH₂Cl₂, rt, 30 min, 98%.

(entry 13). To demonstrate the utility of β -nitroamine products, **2aa** was successfully converted into *syn*-1,2-diamine **6** in 99% yield without epimerization using NaBH₄ and NiCl₂ (Scheme 2).

In the present reaction, both Cu(OAc)₂ and Sm(O-*i*Pr)₃ were essential for good reactivity and selectivity. The 1:1 ratio of Cu-(II) and Sm was also crucial (Table 1),9 and the addition of 4-tBuphenol had beneficial effects on enantioselectivity. Sterically hindered 2,6-(tBu)2-phenol was not effective as an additive (Table 1, entry 17), suggesting that 4-tBu-phenol would work not as a simple proton source but as an achiral ligand. In ESI-MS analysis,13 peaks corresponding to a Cu/Sm/3 complex trimer and oligomers were observed in the absence of 4-tBu-phenol. With 4-tBu-phenol, a new peak corresponding to a monomeric Cu/Sm/3 = 1:1:1complex was observed. On the basis of the ESI-MS analysis, as well as previous reports of related heterobimetallic Cu/rare earth metal/Schiff base complexes,14 we assumed that a monomeric Cu/ Sm/3/4-*t*Bu-phenol = 1:1:1:1 complex (Scheme 1) would be the active species. At the moment, we believe that the bimetallic Cu-Sm system, aligned suitably in dinucleating ligand 3, would play a key role for high stereoselectivity. Further mechanistic studies to clarify the precise role of each metal, reaction mechanism, and origin of syn-selectivity are ongoing.15

In summary, we achieved *syn*-selective catalytic asymmetric nitro-Mannich reactions using a heterobimetallic Cu/Sm/Schiff base ligand **3**. The present method is complementary to the previously reported methods, and products were obtained in high *syn*-selectivity (\geq 20:1), yield (99–62%), and enantioselectivity (98–83% ee). Both

Cu and Sm metals were essential to realize high *syn*-selectivity. Further mechanistic studies as well as applications of the present heterobimetallic catalyst to other asymmetric reactions are in progress.

Acknowledgment. This work was supported by Grant-in-Aid for Specially Promoted Research and Grant-in-Aid for Encouragements for Young Scientists from JSPS and MEXT. We thank Dr. T. Ohshima for his advice at the initial stage of this work.

Supporting Information Available: Experimental procedures, spectra data of the new compounds, determination of relative and absolute configurations, and ESI-MS data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- A review of catalytic asymmetric nitro-Mannich reactions: Westermann, B. Angew. Chem., Int. Ed. 2003, 42, 151.
- (2) With nitromethane: (a) Yamada, K.-I.; Harwood, S. J.; Gröger, H.; Shibasaki, M. Angew. Chem., Int. Ed. 1999, 38, 3504. With nitroalkanes: (b) Yamada, K.-I.; Moll, G.; Shibasaki, M. Synlett 2001, 980.
- (3) Nitro-Mannich reaction of α-imino esters with nitroalkanes: (a) Nishiwaki, N.; Knudsen, K. R.; Gothelf, K. V.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 2992. With preformed silyl nitronates: (b) Knudsen, K. R.; Risgaard, T.; Nishiwaki, N.; Gothelf, K. V.; Jørgensen, K. A. J. Am. Chem. Soc. 2001, 123, 5843. (c) Anderson, J. C.; Howell, G. P.; Lawrence, R. M.; Wilson, C. S. J. Org. Chem. 2005, 70, 5665. For a related example using tert-butyl 2-nitropropanoate as a nucleophile, see: (d) Knudsen, K. R.; Jørgensen, K. A. Org. Biomol. Chem. 2005, 3, 1362.
- (4) Highly anti-selective catalytic asymmetric nitro-Mannich reactions with thioureas: (a) Yoon, T. P.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 466. (b) Xu, X.; Furukawa, T.; Okino, T.; Miyabe, H.; Takemoto, Y. Chem.-Eur. J. 2006, 12, 466. With a chiral proton catalyst: (c) Nugent, B. M.; Yoder, R. A.; Johnston, J. N. J. Am. Chem. Soc. 2004, 126, 3418. With cinchona alkaloids: (d) Palomo, C.; Oiarbide, M.; Laso, A.; López, R. J. Am. Chem. Soc. 2005, 127, 17622.
- (5) For other selected examples of enantioselective nitro-Mannich reactions with nitromethane, see: (a) Okino, T.; Nakamura, S.; Furukawa, T.; Takemoto, Y. Org. Lett. 2004, 6, 625. In ref 5a, nitroethane is also utilized (one example). (b) Lee, A.; Kim, W.; Lee, J.; Hyeon, T.; Kim, B. M. Tetrahedron: Asymmetry 2004, 15, 2595. (c) Fini, F.; Sgarzani, V.; Pettersen, D.; Herrera, R. P.; Bernardi, L.; Fini, F.; Herrera, R. P.; Ricci, A.; Sgarzani, V. Tetrahedron 2006, 62, 375. (e) Palomo, C.; Oiarbide, M.; Halder, R.; Laso, A.; López, R. Angew. Chem., Int. Ed. 2006, 45, 117. (f) Gao, F.; Zhu, J.; Tang, Y.; Deng, M.; Qian, C. Chirality 2006, 45, 741.
 (6) In this paper, we call β-nitroamine 1 as anti-isomer and 2 as syn-isomer.
- (7) Reviews for bifunctional asymmetric catalysis using metal—BINOLate complexes: (a) Shibasaki, M.; Yoshikawa, N. *Chem. Rev.* 2002, *102*, 2187. (b) Shibasaki, M.; Matsunaga, S. *Chem. Soc. Rev.* 2006, *35*, 269.
- (8) For related attempts to develop bifunctional asymmetric catalysts using heterobimetallic Schiff base complexes, see: (a) Annamalai, V.; DiMauro, E. F.; Carroll, P. J.; Kozlowski, M. C. J. Org. Chem. 2003, 68, 1973 and references therein. See also: (b) Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 9928. (c) Li, W.; Thakur, S. S.; Chen, S.-W.; Shin, C.-K.; Kawthekar, R. B.; Kim, G.-J. Tetrahedron Lett. 2006, 47, 3453 and references therein.
- (9) For more detailed results of optimization studies (metal effects, additive effects, and M¹/M²/ligand ratio effects), see Supporting Information. In the initial screening, N-Boc imines gave better results than other imines such as N-diphenylphosphinoyl imine and N-Ts imine.
- (10) For determination of relative and absolute configurations of products in Tables 1 and 2, see Supporting Information.
- (11) When using aryl imine with an *ortho*-substituent (R = 2-Me-C₆H₄), the reaction did not proceed cleanly under the present reaction conditions. Product was obtained in low yield (25% yield).
- (12) Synthesis of aliphatic Boc imines: (a) Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048. (b) Trost, B. M.; Jaratjaroonphong, J.; Reutrakul, V. J. Am. Chem. Soc. 2006, 128, 2778. See also refs 4d and 5c.
- (13) For more detailed results of ESI-MS analysis and discussion, see Supporting Information.
- (14) The structures of related heterobimetallic Cu-rare earth metal-Schiff base complexes were unequivocally determined by X-ray crystallographic analysis. See: (a) Koner, R.; Lee, G.-H.; Wang, Y.; Wei, H.-H.; Mohanta, S. *Eur. J. Inorg. Chem.* 2005, 1500. (b) Benelli, C.; Guerriero, P.; Tamburini, S.; Vigato, P. A. *Mater. Chem. Phys.* 1992, *31*, 137 and references therein. Inner N₂O₂ cavity of a dinucleating ligand is occupied by Cu(II), while rare earth metal occupies the outer O₂O₂ position.
- (15) Postulated reaction mechanism and transition state model for the *syn*isomer are described in Supporting Information.

JA0701560